Lateral transfer of genes from fungi underlies carotenoid production in aphids.

نویسندگان

  • Nancy A Moran
  • Tyler Jarvik
چکیده

Carotenoids are colored compounds produced by plants, fungi, and microorganisms and are required in the diet of most animals for oxidation control or light detection. Pea aphids display a red-green color polymorphism, which influences their susceptibility to natural enemies, and the carotenoid torulene occurs only in red individuals. Unexpectedly, we found that the aphid genome itself encodes multiple enzymes for carotenoid biosynthesis. Phylogenetic analyses show that these aphid genes are derived from fungal genes, which have been integrated into the genome and duplicated. Red individuals have a 30-kilobase region, encoding a single carotenoid desaturase that is absent from green individuals. A mutation causing an amino acid replacement in this desaturase results in loss of torulene and of red body color. Thus, aphids are animals that make their own carotenoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae.

Carotenoids are organic pigments commonly synthesized by plants, algae and some micro-organisms. Through absorption of light energy, carotenoids facilitate photosynthesis and provide protection against photo-oxidation. While it was presumed that all carotenoids in animals were sequestered from their diets, aphids were recently shown to harbour genomic copies of functional carotenoid biosynthesi...

متن کامل

Endosymbiotic bacteria as a source of carotenoids in whiteflies.

Although carotenoids serve important biological functions, animals are generally unable to synthesize these pigments and instead obtain them from food. However, many animals, such as sap-feeding insects, may have limited access to carotenoids in their diet, and it was recently shown that aphids have acquired the ability to produce carotenoids by lateral transfer of fungal genes. Whiteflies also...

متن کامل

Phylloxerids share ancestral carotenoid biosynthesis genes of fungal origin with aphids and adelgids

Gene transfer among reproductively isolated organisms can lead to novel phenotypes and increased fitness. Among the Sternorrhyncha, a suborder of plant sap-feeding hemipteran insects, both aphids and adelgids acquired carotenoid biosynthesis genes from a fungal donor that result in ecologically relevant pigmentation. Phylloxerids form another family that are closely related to aphids and adelgi...

متن کامل

Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus.

The pea aphid genome was recently found to harbor genes for carotenoid biosynthesis, reflecting an ancestral transfer from a fungus. To explore the evolution of the carotene desaturase gene family within aphids, sequences were retrieved from a set of 34 aphid species representing numerous deeply diverging lineages of aphids and analyzed together with fungal sequences retrieved from databases. A...

متن کامل

Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect

A singular adaptive phenotype of a parthenogenetic insect species (Acyrthosiphon pisum) was selected in cold conditions and is characterized by a remarkable apparition of a greenish colour. The aphid pigments involve carotenoid genes well defined in chloroplasts and cyanobacteria and amazingly present in the aphid genome, likely by lateral transfer during evolution. The abundant carotenoid synt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 328 5978  شماره 

صفحات  -

تاریخ انتشار 2010